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New Technologies Require
Advances in Hydrologic

Data Assimilation
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Extensive amounts of hydrologically relevant
remote sensing data are becoming available
and require special capabilities for analysis
and interpretation. For instance, land-surface
temperature data have been available for many
years,and satellite precipitation data are becoming
available at everincreasing space and time
resolutions. In addition, a number of platforms
provide snow and vegetation parameters of
increasing sophistication, and satellite missions
targeted at measuring nearsurface soil moisture
are expected before the end of the decade.

However, current hydrologic remote sensing
analysis and interpretation tools may not be
adequate due to little use of such data until
recent years.This can be attributed to an emphasis
on atmospheric rather than hydrologic remote
sensing missions, a relative immaturity of retrieval
algorithms for deriving hydrologic information
from remote sensing observations, hydrologic
models that are unsuitable for ingesting remote
sensing information,and a limited understanding
of the techniques to objectively improve and
constrain hydrologic models by assimilating
remote sensing data.

The development of hydrologic data assimilation
techniques is still in its infancy While significant
progress has been made in advancing hydro-
logically relevant remote sensing and assimilation
techniques through focused ground- and air-
borne field studies, this expertise has yet to be
applied to satellite data. Moreover, only a few
hydrologic models that can directly use remote
sensing observations have been developed.
Figure 1 demonstrates how satellite observations
of nearsurface soil moisture content may be
used to constrain the hydrologic model prediction
of soil moisture using state-of-the-art hydrologic
data assimilation techniques and models.This
example uses actual space-borne, nearsurface
soil moisture observations from a historic satellite
record in a data assimilation framework,and
highlights the potential benefit of maturing
these techniques. However, quantifying the
improvement in hydrologic model predictions
from assimilation of remote sensing data requires
targeted field campaigns, and such data are
lacking for the historic satellite records.

Because of its importance and because of
our increasing ability to observe relevant hydro-
logic information remotely, it is expected that
the amount of hydrologic remote sensing data
will grow exponentially over the next decade.
However, its usefulness will be limited by our
ability to integrate and analyze diverse hydro-
logic information using data assimilation methods.
Quantifying hydrologic process variability will
require innovative interpretation of potentially
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large hydrologic observation volumes due to
disparities in observation type,scale,and error
(Table 1).Variations in instrument type, place-
ment, and calibration of both remote sensing
and in-situ hydrologic observations must be
quantified.

Clearly, the complexities of future hydrologic
observation scenarios demand that we pursue
methods to organize and comprehend this
information. It is therefore suggested that a
comprehensive hydrologic data assimilation
framework will be a critical component of
future hydrologic observation and modeling
systems.

A Brief History of Hydrologic Data Assimilation

The idea of combining current and past data
in an explicit dynamical model, using the model’s
prognostic equations to provide time continuity
and dynamic coupling amongst the fields, has
evolved into a family of techniques known as
data assimilation. In essence, data assimilation
merges a range of diverse data fields with a
model prediction to find the model represen-
tation that is most consistent with the observa-
tions.That best estimate can then be used to
analyze hydrological processes or initialize a
model forecast more accurately.

Data assimilation techniques were pioneered
by meteorologists and have been used very
successfully to improve operational weather
forecasts for decades. Data assimilation has
also been widely used in oceanography to
improve ocean dynamics prediction. However,
hydrologic data assimilation is still in its infancy.
Fortunately, we have been able to jump-start
hydrologic data assimilation by building on
knowledge derived from the meteorologic
and oceanographic data assimilation experi-
ence, with significant advancements being
made over the past 5-10 years (e.g., review by
McLaughlin [2002]).

Most techniques currently used to assimilate
environmental data are based on ‘variational’
or ‘Kalman filter’ techniques.Variational tech-
niques find the best fit between the forecast
model state and the observations by minimizing
an objective function over space and time.To
minimize the objective function over time, an
assimilation time “window” is defined and an
adjoint model is typically used to find the
derivatives of the objective function with respect
to the model states. While an adjoint is not
strictly required, it makes the problem compu-
tationally tractable. Alternatively, the Kalman
filter sequentially updates the model forecast
using the relative observation and model vari-
ances whenever observations become available.

The variational technique can be formulated
with a ‘strong constraint’ where the model is
assumed perfect, or a ‘weak constraint’ where
errors in the model formulation are taken into
account as process noise.The Kalman filter
can be formulated as: direct insertion, which
assumes perfect observations, ignores forecast
information, and assumes zero correlation
between the observations and other model
states; nudging, where the weighting factor
between the model forecast and the observations,
commonly known as the Kalman gain, is empir-
ically derived; optimal or statistical interpolation,
where the Kalman gain is derived from assumed
and typically time-invariant error co-variances;
the extended Kalman filter, where error co-vari-
ances are propagated in time using a linearized
or simplified forecast model; or the ensemble
Kalman filter, where dynamic co-variances are
derived from an ensemble of forecasts.

Variational methods are well suited for
smoothing problems, but provide information
on estimation accuracy only at considerable
computational cost. Unfortunately, adjoints are
not available for existing hydrologic models, and
the development of robust adjoint models is
difficult due to the nonlinear nature of hydrologic
processes.While direct insertion, nudging, and
optimal interpolation are computationally effi-
cient and easy to implement, the updates do
not account for system dynamics or measurement
statistics,and information on estimation accuracy
is limited.

The extended Kalman filter, while computa-
tionally demanding in its pure form, can be
adapted for nearreal-time application and
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Fig. 1. Satellite observations of nearsurface soil moisture content made by the scanning multifre-
quency microwave radiometer (SMMR) may be used to constrain hydrologic model predictions
of soil moisture throughout the soil profile using data assimilation.



provides information on estimation accuracy.
However, it has only limited capability for dealing
with model errors, and necessary linearization
approximations can lead to unstable solutions.
The ensemble Kalman filter, while it can be
computationally demanding (depending on the
size of the ensemble), is well suited for near-
real-time applications, is robust, very flexible,
and easy to use,and is able to accommodate
a wide range of model error descriptions.

Examples of Hydrologic Data Assimilation

Data assimilation helps to maximize an
observation’s usefulness by not only propagating
its information in space (horizontally and ver-
tically) and time, but also by acting as an effective
downscaling tool. Hydrological data assimilation
systems that include higher resolution meteo-
rological,land cover,and soil texture information
can be constrained to lower resolution obser-
vations,such as passive microwave soil moisture.
Additional resolution improvements may also
be gained from the deconvolution of overlapping
and multi-angle observations.

Because of snow’s high albedo, thermal
properties, feedback to the atmosphere, and
its capacity for medium-term water storage,
improved snow state estimation has the potential
to greatly increase climatological and hydro-
logical prediction accuracy. By assimilating
snow water equivalent observations from remote
sensing satellites, it has been shown that
unobserved snow states, including snow
depth and snow temperature, can be retrieved,
and the prediction of runoff and atmospheric
fluxes substantially improved.

Land surface skin temperature, which is a
principal control on land-atmosphere fluxes
of water and energy, is closely related to soil
water states and is easily observable from
space and aircraft infrared sensors in cloud-free
conditions. However, skin temperature has a
very short memory—on the order of minutes—
due to the very small heat storage it represents.
Therefore, correlations of skin temperature with
other longermemory states (that is, deeper
temperature or moisture) must be exploited
by the assimilation procedure to impact the
model’s long-term trajectory:

Advances, Current Priorities, and Challenges
in Hydrologic Data Assimilation

The application of data assimilation in hydrology
has so far been limited mostly to one-dimen-
sional, largely theoretical studies that assimilate
nearsurface soil moisture, soil skin tempera-
ture, or snow observations. Nevertheless, the
feasibility of undertaking spatially distributed
data assimilation in hydrological models has
been demonstrated by a number of recent
studies [e.g.,Houser et al.,1998; Reichle et al.,2002;
Walker et al.,2002; Crow and Wood, 2003],and
was the topic of the recent Catchment-scale
Hydrological Modeling and Data Assimilation
Workshop [Tioch et al.,2003].

With hydrologic data assimilation still in its
infancy there are many open areas of research.
One key question is whether the land surface
should be considered in isolation from or cou-
pled to the atmosphere. If a coupled model is
not used, then assimilation of land surface
states can cause biases to arise in the fluxes
back to the atmosphere. From a weather and
climate forecasting perspective, it is the fluxes
that are of most importance, while for agriculture
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Table 1. Hydrologic Observations Available During the Next Decade.
Remote-
Hydrologic Sensing Time Space Scale |Accuracy Considerations
Quantity Technique Scale
Thermal lhour |4km Tropical convective clouds only
infrared 1 day 1 km
15days |60 m
Precipitation  [Passive 3 hours |10 km Land calibration problems
microwave
Active 30 days |10 m Land calibration problems
microwave
Passive 1-3 days [25-50 km Limited to sparse vegetation, low
Surface soil microwave topographic relief
moisture Active 3days |3 km Significant noise from vegetation
microwave 30 days |10 m and roughness
Surface skin Thermal lThour |4km Soil/vegetation average, cloud
temperature infrared 1 day 1 km contamination
15days |60 m
Snow cover Visible/thermal |1 hour |4 km Cloud contamination, vegetation
infrared 1 day 500 m-1 km [masking, bright soil problems
15 days [30-60 m
Passive 1-3 days |10 km Limited depth penetration
Snow water microwave
equivalent Active 30 days |10 m
microwave
Water Laser 10 days Cloud penetration problems
level/velocity  [Radar 30 days
Total water Gravity changes |30 days |1000 km Bulk water storage change
storage changes
Thermal lhour |4km Significant assumptions
Evaporation infrared 1 day 1km
15days |60 m

and flood forecasting, the land surface states
themselves are of primary importance.

A second key topic is the choice of assimilation
technique.Though all of the assimilation tech-
niques described above can theoretically be
applied to almost any dynamic problem in the
geosciences,an important factor in determining
the choice of method is computational feasi-
bility As higher resolution observations from
an increasing number of sensors become avail-
able, higher resolution models are developed,
and nearrealtime information is required, there
is a clear trade-off against the computational
requirements of the data assimilation technique
and optimal use of the data.

We must also recognize that assimilation
does not always improve model predictions.
Accurate model and observation error statistics
are required for successful data assimilation.
If, for example, surface soil moisture observations
are biased, information may be improperly prop-
agated to depth. In the presence of biased
nearsurface meteorological forcing, assimilation
of unbiased observations into a hydrological
model can cause biased subsurface state esti-
mates or land surface boundary conditions
that are inconsistent with the overlying atmos-
phere, which can lead to degraded, and even
unrealistic, surface flux predictions. However,a
bias correction scheme can be implemented
to correct for long-term model biases. More-
over, the increasing data stream from satellite
platforms must be used to quantify model
and observation error statistics more accurately.

Apart from the sheer volume of data that will
be collected, there will be a disparity of scales
and data types,all of which provide a piece of
information about the state of the land surface

that requires interpretation, though none provides
the complete picture. It is clear that a compre-
hensive hydrologic data assimilation framework
will be critical to integrate and analyze the
extensive and diverse remote sensing data that
will be available in the near future.
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